The path beyond 100G

2012-08-09 17:47:30

Week News Abstract For Fiber Series in 10GTEK
The abstract is mainly about the optical communication related products,including: SFP,QSFP,FTTH,GPON,EPON,SFPPLC,PTN,ODN,Sfp Transceiver,Optic Transceiver,Optical module,Optical devices,optical communications,Optical transceiver module,Etc.

CenturyLink connects Charlotte data centers
CenturyLink (NYSE: CTL) says its fiber network now reaches five data centers in Charlotte, NC. The new infrastructure aims to provide businesses in Charlotte and elsewhere in the United States with reliable, high-speed access to cloud-based services.CenturyLink says it can use its Charlotte fiber ring network to meet demand for increased bandwidth via customizable data networking services at standardized pricing, with secure access into the five area data centers at no additional cost. These services include:CenturyLink IQ Internet Port, which offers scalable Internet connectivity at customizable access speeds CenturyLink IQ Networking Private Port, a private IP-based VPN service that combines voice and data applications onto a single network   Optical Wavelength Service, which provides customers with a fully managed, private, point-to-point service using DWDM."CenturyLink's data networking products, combined with reliable connectivity to our nationwide next-generation network and secure access into data centers, will help businesses in Charlotte develop and launch cloud-based offerings needed in today's fast-paced business environment," said Richard Twilley, CenturyLink vice president of sales. "By helping businesses tap into the power of managed hosting and cloud computing, CenturyLink continues to demonstrate its success in serving enterprise and government customers nationwide."
The path beyond 100G
Carriers face ever-increasing needs for bandwidth and capacity in their metro, regional, and long-haul optical networks due to the demands of high-speed data services, Internet video services, data centers, and higher-bandwidth residential broadband connections. Until recently, most DWDM systems supported up to 88 channels with 10-Gbps data rates per channel. To provide additional network capacity, improved spectral efficiency, and lower cost per bit, the optical transport industry has been developing 100G technologies for the last 3–4 years.A limited number of vendors introduced 100G transponders and muxponders, based on single-carrier dual-polarization quadrature phase-shift keying (DP-QPSK) modulation and coherent detection, in 2011. Carriers have started to deploy these 100G units for capacity-constrained routes and to support 100-Gigabit Ethernet private line services, a trend that will continue to grow over the next few years. One of the key benefits of 100G transponders and muxponders is the ability to expand existing WDM network capacity by 10X, eliminating the need for costly overbuild networks.The optical industry now is shifting focus and R&D activities to enable even greater capacity. Some possible options include:Increasing optical channel rates Increasing the number of WDM channels   Adding parallel systems over additional fiber pairs Combinations of the approaches above.ach option has its own set of tradeoffs, which are being studied and evaluated. For example, increasing channel rates from 100G to 400G also incurs additional optical signal-to-noise ratio (OSNR) requirements, which can limit the overall optical reach of a signal, requiring additional regeneration nodes on long-haul routes. Adding parallel WDM systems over separate fiber pairs to increase capacity offers the benefit of using currently available technology and WDM platforms, but requires significant additional investment, as well as using additional fiber resources.Carriers are likely to adopt many, if not all, of these approaches in one form or another. In the near term, capacity is being increased by using additional fiber pairs, as well as migrating to 100G interfaces. Future systems will use even higher speed, 400G optical interfaces.400G – Capacity versus reach With the introduction of 100G, the industry shifted from very simple modulation techniques (on/off keying) that transported a single bit of data, to much more advanced phase modulation techniques (DP-QPSK) capable of encoding and sending multiple bits at once. Along with coherent receivers, these more advanced modulation techniques enable much higher data rates and improved compensation for optical impairments such as chromatic dispersion, polarization mode dispersion, and optical loss.The tradeoff with these advanced modulation techniques is they require higher OSNR. OSNR translates directly into the optical distances that can be achieved prior to a regeneration node. In other words, the more sophisticated and powerful the modulation, the shorter the optical reach. This tradeoff between modulation technique, channel size, and OSNR requirements is at the heart of current 400G research efforts.Researchers are evaluating a number of advanced modulation schemes and channel sizes for use at 400G, as shown in Figure 1. In general, the higher order modulation techniques, such as 16QAM and 64QAM, encode more bits per symbol and can be squeezed into smaller channel sizes, but with the previously mentioned tradeoff of much higher OSNR requirements.Figure 1. Advancements in optical interfaces, 1980–2015.As vendors and the optical industry evaluate these different 400G modulation, channel size, and OSNR options, it will be critical to adopt a single, standardized approach. The industry achieved such a consensus at 100G for long-haul applications, working through the Optical Internetworking Forum (OIF). A similar approach to 400G OIF standardization will be needed to ensure a healthy, robust, component supply chain with wide choices and competitive pricing.Spectral efficiency and subcarriers While the OIF has not yet started such a standardization process, a number of vendors have active 400G research and development efforts underway. One likely candidate for 400G modulation will be DP-16QAM using two subcarriers to continue the progress that has been made in improving spectral efficiency.Spectral efficiency is one measure of how efficient an optical interface or modulation scheme is at using the available fiber, and is measured in the number of bits transmitted per second per Hz of optical spectrum (bits/s/Hz). Existing 10G wavelengths use simple OOK for modulation and easily fit within the 50-GHz channel grid spacing, as shown in Figure 2. However, at 10G much of the 50-GHz channel is unused, resulting in relatively low spectral efficiency of only 0.2 bits/s/Hz. With 100G modulation techniques, 10X the data rate is transmitted in the same 50-GHz channel spacing, resulting in 2 bits/s/Hz spectral efficiency.Figure 2. Capacity versus OSNR advancement modulation.As mentioned before, efficient transmission of 400G will require the optimum combination of modulation format, channel size, and OSNR requirements. DP-16QAM with two subcarriers looks very promising in this context. Using subcarriers offers a number of key advantages. Subcarriers enable very high data rates to be divided and transported over any number of closely spaced, or slightly overlapping, subcarrier channels. The lower data rates on each subcarrier enable implementations that fit within existing component-level silicon technologies, one example being the high-speed analog-to-digital converters (ADCs) used in the coherent receivers. In addition, subcarrier channels can be spaced on existing 50-GHz grid channels to provide compatibility with existing WDM networks, or future flexible-grid spaced WDM systems.DP-16QAM modulation using two subcarriers with a total of 87.5 GHz channel spacing is shown in Figure 3. The spectral efficiency of this approach is approximately 4.6 bits/s/Hz.Figure 3. 10G and 100G spectral efficiency.Summary  With 100G development efforts largely complete, the optical transport industry is evaluating modulation techniques, channel size, and OSNR requirements for 400G, with the goal of a single, industry-standard approach, working through the OIF. Although still early, one leading candidate is DP-16QAM using two subcarriers.
QualiSystems enhances TestShell test automation software tool
QualiSystems has taken the wraps off of its TestShell 4.8 software framework for lab management, device provisioning, and test automation. The upgrades in version 4.8 aim to speed topology creation, improve team collaboration, and increase flexibility.Along these lines, QualiSystems says that enhancements to the interactive topology diagram significantly improve user experience. The upgrades guarantee fast comprehension of active reservations by enabling direct viewing of the type of connectivity used, e.g., a route/tapping, etc., as well as fast tracking of connected and disconnected routes. Direct drag-and-drop from a device search grid reduces setup creation and/or modification time, according to the company.Simplified automation tools include a set of upgraded libraries for a smoother interaction with lab devices. The SNMP Manager Library simplifies the usage of SNMP Network Protocols (v1/v2c/v3) enabling users to easily reach network-related information and optionally activate automatic SNMP retries. Users also can improve listening and capturing on any trap field, QualiSystems adds.The upgraded traffic libraries include “out-of-the-box” support for such traffic generators as IxLoad, IxNetwork, Ixia Test Composer, and TestCenter, among others.A new ability to share devices and routes simultaneous helps maximize device use. Users also can initiate automatically provisioning procedures to set up test environments at the beginning of a reservation.Finally, lab managers can access in depth business intelligence on their lab operation and spot various reservation trends via TestShell reporting and online dashboards. Additionally, the available API calls have doubled, making it easier for users to automatically access the new capabilities related to administration, topology control operations, management, and reporting."The new TestShell 4.8 framework continues QualiSystems' commitment to helping customers test their network infrastructure more effectively, while leveraging existing resources," says Eitan Lavie, QualiSystems vice president of product management and marketing. "With a friendlier user interface and a multitude of new features designed to enhance user experience, TestShell accelerates and simplifies the testing process, and guarantees the most powerful performance framework available in the market today."
The above information is edited by 10GTEK.
10GTEK TRANSCEIVERS CO., LTD (Hereinafter refered to as 10GTEK) is specialized in developing and manufacturing Fiber Optical Transceivers and High Performance Cables which are wildly applied in Datacom, Telecom and CATV, providing customers with top quality and cost effective products. Our High Speed Cables cover Passive SFP+ Cable, Active SFP+ Cable, QSFP+ cables, MiniSAS (SFF-8088) Cables, CX4 Cables, Harness cables, Breakout Cables, Patchcords. We also manufacture Fiber Optic Transceivers like 10G XFP, 10G SFP+, SFP DWDM/ CWDM, GBIC, etc. The prompt response and excellent customer support contribute to clients‘ full satisfaction.Today, 10GTEK has been growing fast in the optical field for its unique and competitve excellence which has got a high attention from datacom and telecom.
This article reader also like:Hittite offers clock divider and delay management IC