Driving Your Next Generation Networks

www.10gtek.com

10Gtek

AXS13-192-02

1310nm SFP+ Single-Mode for 10GbE Duplex SFP+ Transceiver RoHS 6 Compliant

Features

- Operating data rate up to 11.3Gbps
- 1310nm FP Transmitter
- GaAs PIN photodiode Receiver
- Distance up to 2km over SMF
- Single 3.3V Power supply and TTL Logic Interface
- Duplex LC Connector Interface
- Operating Case Temperature Standard: 0[°]C ~+70[°]C
- Hot Pluggable
- Compliant with SFP+ MSA Specification SFF-8431
- Compliant with SFF-8472

Applications

- 10GBase-LR/LW
- Custom High-speed Data Pipes
- Other Optical Links

Driving Your Next Generation Networks

www.10gtek.com

Regulatory Compliance

Feature	Standard	Performance
Electrostatic Discharge (ESD) to the Electrical Pins	MIL-STD-883G Method 3015.7	Class 1C (>1000 V)
Electrostatic Discharge To the enclosure	EN 55024:1998+A1+A2 IEC-61000-4-2 GR-1089-CORE	Compliant with standards
Electromagnetic Interference (EMI)	FCC Part 15 Class B EN55022:2006 CISPR 22B :2006 VCCI Class B	Compliant with standards
Immunity	EN 55024:1998+A1+A2 IEC 61000-4-3	Compliant with standards. 1kHz sine-wave, 80% AM, from 80 MHz to 1 GHz. No effect on transmitter/receiver performance is detectable between these limits.
Laser Eye Safety	FDA 21CFR 1040.10 and 1040.11 EN (IEC) 60825-1:2007 EN (IEC) 60825-2:2004+A1	CDRH compliant and Class I laser product.
Component Recognition	UL and CUL EN60950-1:2006	Compliant with standards
RoHS6	2002/95/EC 4.1&4.2 2005/747/EC 5&7&13	Compliant with standards ^{note1}

Note1: For update of the equipments and strict control of raw materials, 10Gtek has the ability to supply the customized products since Jan 1st, 2007, which meets the requirements of RoHS6 (Restrictions on use of certain Hazardous Substances) of European Union.

In light of item 5 in RoHS exemption list of RoHS Directive 2002/95/EC, Item 5: Lead in glass of cathode ray tubes, electronic components and fluorescent tubes.

In light of item 13 in RoHS exemption list of RoHS Directive 2005/747/EC, Item 13: Lead and cadmium in optical and filter glass. The three exemptions are being concerned for 10Gtek's transceivers, because 10Gtek's transceivers use glass, which may contain Pb, for components such as lenses, isolators, and other electronic components.

Driving Your Next Generation Networks

Product Description

The AXS13-192-02 series single mode transceiver is SFP+ module for duplex optical data communications such as 10GBase-LR/LW.

It is with the SFP+ 20-pin connector to allow hot plug capability. Digital diagnostic functions are available via an I^2 C. This module is designed for single mode fiber and operates at a nominalwavelength of 1310 nm.

The transmitter section uses a 1310nm Fabry-perot Laser (FP), which is class 1 laser compliant according to International Safety Standard IEC-60825. The receiver section uses an integrated InGaAs detector preamplifier (IDP) mounted in an optical header and a limiting post-amplifier IC.

Absolute Maximum Ratingsnote2

Parameter	Symbol	Min.	Max.	Unit
Storage Temperature	Ts	-40	+85	°C
Operating Case Temperature	Tcase	0	70	°C
Supply Voltage	VCC	-0.5	3.6	V

Note2: Exceeding any one of these values may destroy the device permanently.

Recommended Operating Conditions

Parameter	Symbol	Min.	Typical	Max.	Unit
Operating Case Temperature	T _A	0		+70	°C
Power Supply Voltage	V _{CC}	3.14	3.3	3.46	V
Power Supply Current	I _{CC}			300	mA
Surge Current	I _{Surge}			+30	mA
Baud Rate			9.95/10.3		GBaud

Performance Specifications - Electrical

Parameter	Symbol	Min.	Тур.	Мах	Unit	Notes
		Tran	smitter			
CML Inputs(Differential)	Vin	150		1200	mVpp	AC coupled inputs
Input Impedance (Differential)	Zin	85	100	115	ohms	Rin > 100 kohms @ DC
Tx_DISABLE Input Voltage – High		2		3.46	V	
Tx_DISABLE Input Voltage – Low		0		0.8	V	

www.10gtek.com

10Gtek

Tx_FAULT Output Voltage - High		2		Vcc+0.3	V	lo = 400µA; Host Vcc
Tx_FAULT Output Voltage – Low		0		0.5	V	lo = -4.0mA
CML Outputs (Differential)	Vout	350		700	mVpp	AC coupled outputs
Output Impedance (Differential)	Zout	85	100	115	ohms	
Rx_LOS Output Voltage - High		2		Vcc+0.3	V	lo = 400µA; Host Vcc
Rx_LOS Output Voltage - Low		0		0.8	V	lo = -4.0mA
MOD DEF (0:2)	VoH	2.5			V	With Sorial ID
	VoL	0		0.5	V	With Serial ID

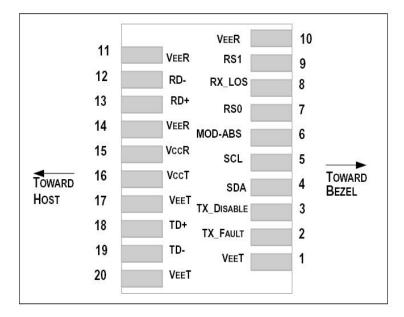
Optical and Electrical Characteristics

Parameter	•	Symbol	Min.	Typical	Max.	Unit
SMF				2		km
Data Rate	Data Rate			9.95/10.3		Gbps
Centre Waveler	λ	1260	1310	1360	nm	
Spectral Width (-2	20dB)	Δλ			3	nm
Average Output Po	owernote3	Pout,	-5.2		0	dBm
Extinction Ra		ER	3.5			dB
Transmitter and Dispers	Transmitter and Dispersion Penalty				-6.2	dB
Average Power of OFF	Average Power of OFF Transmitter				-30	dBm
Relative Intensity	Relative Intensity Noise				-128	dB/Hz
Input Differential Imp	bedance	ZI	90	100	110	Ω
TX Disable	Disable		2.0		Vcc+0.3	V
I X Disable	Enable		0		0.8	V
TX Fault	Fault		2.0		VCC+0.3	V
IX Fault	Normal		0		0.8	V
TX Disable Assert	Time	t_off			10	< us
	R	eceiver				
Centre Waveler	Centre Wavelength		1260		1610	nm
Sensitivitynot	Sensitivity ^{note4}				-14	dBm
Receiver Overle	oad	P _{MAX}	0.5			dBm
Output Differential Im	pedance	P _{IN}	90	100	110	Ω

4

www.10gtek.com

Driving Your Next Generation Networks


LOS De-Assert		LOSD		-14	dBm
LOS Assert		LOS _A	-30		dBm
	High		2.0	V _{CC} +0.3	V
LOS	Low		0	0.8	

Note3: Output is coupled into a 9/125um SMF.

Note4: Measured with worst ER, BER less than 1E-12 and PRBS 2³¹-1 at 10.3125Gbps.

SFP+ Transceiver Electrical Pad Layout

Driving Your Next Generation Networks

www.10gtek.com

Pin Function Definitions

Pin Num.	Name	FUNCTION	Plug Seq.	Notes
1	VeeT	Transmitter Ground	1	note9
2	TX Fault	Transmitter Fault Indication	3	note5
3	TX Disable	Transmitter Disable	3	Module disables on high or open note6
4	SDA	Module Definition 2	3	Data line for Serial ID note7
5	SCL	Module Definition 1	3	Clock line for Serial ID note7
6	MOD_ABS	Module Definition 0	3	note7
		RX Rate Select		This pin has an internal 30k pull down to
7	RS0	(LVTTL).	3	ground. A signal on this pin will not affect
				module performance.
8	LOS	Loss of Signal	3	note8
		TX Rate Select		This pin has an internal 30k pull down to
9	RS1	(LVTTL).	1	ground. A signal on this pin will not affect
				module performance.
10	VeeR	Receiver Ground	1	note9
11	VeeR	Receiver Ground	1	note9
12	RD-	Inv. Received Data Out	3	note10
13	RD+	Received Data Out	3	note10
14	VeeR	Receiver Ground	1	note9
15	VccR	Receiver Power	2	3.3 ± 5% ^{Note11}
16	VccT	Transmitter Power	2	3.3 ± 5% ^{Note 11}
17	VeeT	Transmitter Ground	1	note9
18	TD+	Transmit Data In	3	note12
19	TD-	Inv. Transmit Data In	3	note12
20	VeeT	Transmitter Ground	1	note9

Note5: TX Fault is an open collector/drain output, which should be pulled up with a $4.7K - 10K\Omega$ resistor on the host board. Pull up voltage between 2.0V and VccT, R+0.3V. When high, output indicates a laser fault of some kind. Low indicates normal operation. In the low state, the output will be pulled to < 0.8V.

Note6: TX disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a $4.7 - 10 \text{ K}\Omega$ resistor. Its states are:

Low (0 – 0.8V): Transmitter on

(>0.8, < 2.0V): Undefined

High (2.0 – 3.465V): Transmitter Disabled

Open: Transmitter Disabled

Note7: Modulation Absent, connected to VEET or VEER in the module.

Note8: LOS (Loss of Signal) is an open collector/drain output, which should be pulled up with a $4.7K - 10K\Omega$ resistor. Pull

Driving Your Next Generation Networks

up voltage between 2.0V and VccT, R+0.3V. When high, this output indicates the received optical power is below the worst-case receiver sensitivity (as defined by the standard in use). Low indicates normal operation. In the low state, the output will be pulled to < 0.8V.

Note9: VeeR and VeeT may be internally connected within the SFP+ module.

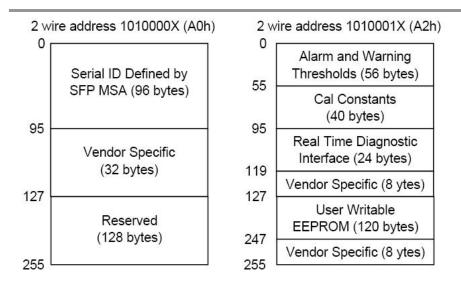
Note10: RD-/+: These are the differential receiver outputs. They are AC coupled 100Ω differential lines which should be terminated with 100Ω (differential) at the user SERDES. The AC coupling is done inside the module and is thus not required on the host board. The voltage swing on these lines will be between 350 and 700 mV differential (175–350 mV single ended) when properly terminated.

Note11: VccR and VccT are the receiver and transmitter power supplies. They are defined as $3.3V \pm 5\%$ at the SFP+ connector pin. Maximum supply current is 300mA. Recommended host board power supply filtering is shown below. Inductors with DC resistance of less than 1 ohm should be used in order to maintain the required voltage at the SFP+

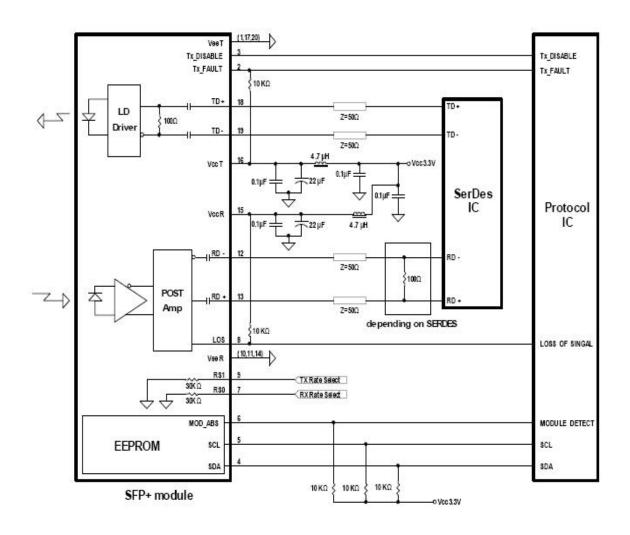
input pin with 3.3V supply voltage. When the recommended supply-filtering network is used, hot plugging of the SFP+ transceiver module will result in an inrush current of no more than 30mA greater than the steady state value. VccR and VccT may be internally connected within the SFP+ transceiver module.

Note12: TD-/+: These are the differential transmitter inputs. They are AC-coupled, differential lines with 100Ω differential termination inside the module. The AC coupling is done inside the module and is thus not required on the host board. The inputs will accept differential swings of 150 - 1200 mV (75 - 600mV single-ended).

EEPROM

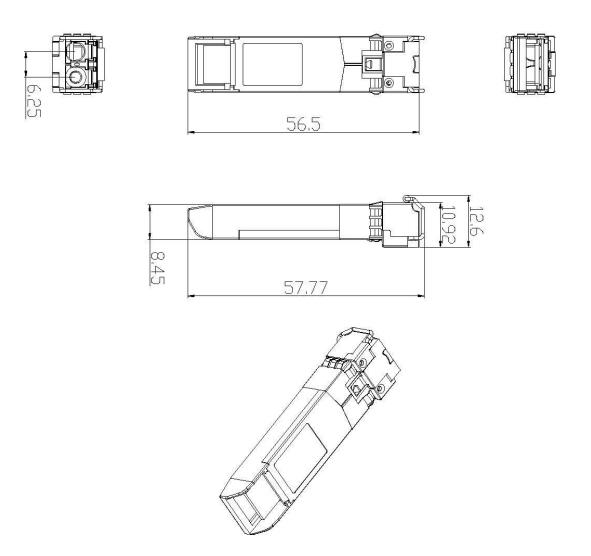

The serial interface uses the 2-wire serial CMOS EEPROM protocol defined for the ATMEL AT24C02/04 family of components. When the serial protocol is activated, the host generates the serial clock signal (SCL). The positive edge clocks data into those segments of the EEPROM that are not writing protected within the SFP+ transceiver. The negative edge clocks data from the SFP+ transceiver. The serial data signal (SDA) is bi-directional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially.

The Module provides diagnostic information about the present operating conditions. The transceiver generates this diagnostic data by digitization of internal analog signals. Calibration and alarm/warning threshold data is written during device manufacture. Received power monitoring, transmitted power monitoring, bias current monitoring, supply voltage monitoring and temperature monitoring all are implemented. If the module is defined as external calibrated, the diagnostic data are raw A/D values and must be converted to real world units using calibration constants stored in EEPROM locations 56 – 95 at wire serial bus address A2h. The digital diagnostic memory map specific data field define as following. For detail EEPROM information, please refer to the related document of SFF 8472 Rev 10.2.



Driving Your Next Generation Networks

Recommend Circuit Schematic



Driving Your Next Generation Networks

www.10gtek.com

Mechanical Specifications

Driving Your Next Generation Networks

Revision History

Revision	Initiated	Approved	content	Release Date
Ver1.0	Jacky	Nicky	Released	Dec/2011

Ordering information

Part No.	Data Rate	Laser	Fibre Type	Temp.	Distance	Optical Interface	DDMI
AXS13-192-02	10Gbps	1310nm FP	SMF	0~70 ℃	2km	LC	YES

Further Information

For further information, please contact info@10gtek.com Tel : +86 755 2998 8100 Fax: +86 755 6162 4140 Web: www.10gtek.com