Driving Your Next Generation Networks

www.10gtek.com

1550nm SFP Single-Mode for 155M SDH/SONET Duplex SFP Transceiver RoHS 6 Compliant

ASF15-03-120-D

Features

- Operating data rate up to 155 Mbps
- 1550nm DFB Transmitter
- GaAs PIN photodiode Receiver
- Maximum link length of 120Km
- Single 3.3V Power supply and TTL Logic Interface
- Duplex LC Connector Interface
- Operating Case Temperature: -0 ℃~+70 ℃
- Hot Pluggable
- Compliant with SFP+ MSA Specification
- Compliant with SFF-8472

Applications

- SONET OC-3/SDH STM-1
- WDM Fast Ethernet Links

Product Description

The ASF15-03-120-D series Single-mode transceiver is SFP module for duplex optical data communications such as Fast Ethernet and OC-3/STM-1 SDH/SONET.

It is with the SFP 20-pin connector to allow hot plug capability. This module is designed for Single -mode fiber and operates at a nominal wavelength of 1550 nm.

The transmitter section uses a 1550nm Distributed Feedback Laser (DFB), which is a Class 1

Driving Your Next Generation Networks

www.10gtek.com

laser compliant according to International Safety Standard IEC 60825. The receiver section uses an integrated GaAs detector preamplifier (IDP) mounted in an optical header and a limiting post-amplifier IC.

Regulatory Compliance

Feature	Standard	Performance
Electrostatic Discharge (ESD) to the Electrical Pins	MIL-STD-883G Method 3015.7	Class 1C (>1000 V)
Electrostatic Discharge to the Enclosure	to the Enclosure GR-1089-CORE	
Electromagnetic Interference (EMI)	FCC Part 15 Class B EN55022:2006 CISPR 22B :2006 VCCI Class B	Compliant with standards
Immunity	EN 55024:1998+A1+A2 IEC 61000-4-3	Compliant with standards. 1KHz sine-wave, 80% AM, from 80MHz to 1GHz. No effect on transmitter/receiver performance is detectable between these limits.
Laser Eye Safety	FDA 21CFR 1040.10 and 1040.11 EN (IEC) 60825-1:2007 EN (IEC) 60825-2:2004+A1	CDRH compliant and Class I laser product.
Component Recognition	UL and CUL EN60950-1:2006	Compliant with standards
RoHS6	2002/95/EC 4.1&4.2 2005/747/EC 5&7&13	Compliant with standardsnote1

Note1: For update of the equipments and strict control of raw materials, 10Gtek has the ability to supply the customized products since Jan 1st, 2007, which meets the requirements of RoHS6 (Restrictions on use of certain Hazardous Substances) of European Union.

In light of item 5 in RoHS exemption list of RoHS Directive 2002/95/EC, Item 5: Lead in glass of cathode ray tubes, electronic components and fluorescent tubes.

In light of item 13 in RoHS exemption list of RoHS Directive 2005/747/EC, Item 13: Lead and cadmium in optical and filter glass. The three exemptions are being concerned for 10Gtek's transceivers, because 10Gtek's transceivers use glass, which may contain Pb, for components such as lenses, isolators, and other electronic components.

Driving Your Next Generation Networks

www.10gtek.com

Absolute Maximum Ratingsnote2

Parameter	Symbol	Min.	Max.	Unit
Storage Temperature	Ts	-40	+85	°C
Operating Case Temperature	T _{case}	0	70	°C
Supply Voltage	Vcc	-0.5	3.6	V

Note2: Exceeding any one of these values may destroy the device permanently.

Recommended Operating Conditions

Parameter	Symbol	Min.	Typical	Max.	Unit
Power Supply Voltage	Vcc	3.14	3.3	3.46	V
Power Supply Current	Icc			300	mA
Baud Rate			155		Mbps

Performance Specifications - Electrical

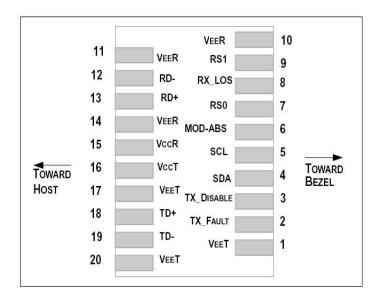
Parameter	Symbol	Min.	Тур.	Max	Unit	Notes
		T	ransmit	ter		
LVPECL Inputs(Differential)	Vin	400		2000	mVpp	AC coupled inputs
Input Impedance (Differential)	Zin	85	100	115	ohms	Rin > 100 kohms @ DC
Tx_DISABLE Input Voltage - High		2		Vcc	V	
Tx_DISABLE Input Voltage - Low		0		0.8	V	
Tx_FAULT Output Voltage - High		2		Vcc+0.3	V	lo = 400μA; Host Vcc
Tx_FAULT Output Voltage - Low		0		0.5	V	Io = -4.0mA
			Receive	r		
LVPECL Outputs (Differential)	Vout	400		2000	mVpp	AC coupled outputs
Output Impedance (Differential)	Zout	85	100	115	ohms	
Rx_LOS Output Voltage - High		2		Vcc+0.3	V	lo = 400μA; Host Vcc

10Gtek Transceivers Co.,Ltd

Driving Your Next Generation Networks

www.10gtek.com

Rx_LOS Output Voltage - Low		0	0.8	V	lo = -4.0mA
MOD DEE (0:2)	VoH	2.5		V	With Serial ID
MOD_DEF (0:2)	VoL	0	0.5	V	VVIIII Senai ID


Optical and Electrical Characteristics

Par	Parameter			Typical	Max.	Unit		
	SMF			100		Km		
Dat			155		Mbps			
Transmitter								
Centre '	Wavelength	λ _C	1530	1550	1570	nm		
Spectral \	Width (-20dB)	Δλ			1	nm		
Side Mode S	uppression Ratio	SMSR	30			dB		
Average (Output Power	P _{out, AVG}	0		5	dBm		
Extino	tion Ratio	ER	10			dB		
Output	Optical Eye		IE	EEE 802.3-2	005 Compli	ant		
Transmitter and	Dispersion Penalty	TDP			3.9	dB		
Average Power	of OFF Transmitter				-30	dBm		
Relative II	RIN			-128	dB/Hz			
Input Differe	ntial Impedance	Z _{IN}	90	100	110	Ω		
TV Diaghla	Disable		2.0		Vcc+0.3			
TX Disable	Enable		0		0.8	V		
TV Fault	Fault		2.0		V _{CC} +0.3	V		
TX Fault	Normal		0		0.8			
TX Disabl	e Assert Time	t_off			10	us		
		Receiver						
Centre '	Wavelength	λc	1260		1610	nm		
Sens	PIN			-35	dBm			
Receive	P _{MAX}	0			dBm			
Output Differ	P _{IN}	90	100	110	Ω			
LOSI	LOS De-Assert				-35	dBm		
LOS	LOS _A	-45			dBm			
1.00	High		2.0		V _{CC} +0.3	\/		
LOS	Low		0		0.8	V		

Note3: Measured with worst ER, BER less than 1E-12 and PRBS 2^{23} -1 at 155Mbps.

SFP Transceiver Electrical Pad Layout

Pin Function Definitions

Pin Num.	Name	FUNCTION	Plug Seq.	Notes
1	VeeT	Transmitter Ground	1	Note8
2	TX Fault	Transmitter Fault Indication	3	Note4
3	TX Disable	Transmitter Disable	3	Note 6, Module disables on high or open
4	SDA	Module Definition 2	3	Note6, Data line for Serial ID.
5	SCL	Module Definition 1	3	Note6, Clock line for Serial ID.
6	MOD_ABS	Module Definition 0	3	Note6
7	RS0	RX Rate Select (LVTTL).	3	This pin has an internal 30k pull down to ground. A signal on this pin will not affect module performance.
8	LOS	Loss of Signal	3	Note7
9	RS1	TX Rate Select (LVTTL).	1	This pin has an internal 30k pull down to ground. A signal on this pin will not affect module performance.
10	VeeR	Receiver Ground	1	Note8
11	VeeR	Receiver Ground	1	Note8
12	RD-	Inv. Received Data Out	3	Note9
13	RD+	Received Data Out	3	Note9
14	VeeR	Receiver Ground	1	Note8

10Gtek Transceivers Co.,Ltd

Driving Your Next Generation Networks

www.10gtek.com

15	VccR	Receiver Power	2	3.3 ± 5%, Note10
16	VccT	Transmitter Power	2	3.3 ± 5%, Note10
17	VeeT	Transmitter Ground	1	Note8
18	TD+	Transmit Data In	3	Note11
19	TD-	Inv. Transmit Data In	3	Note11
20	VeeT	Transmitter Ground	1	Note8

Note4: TX Fault is an open collector/drain output, which should be pulled up with a $4.7K - 10K\Omega$ resistor on the host board. Pull up voltage between 2.0V and VccT, R+0.3V. When high, output indicates a laser fault of some kind. Low indicates normal operation. In the low state, the output will be pulled to < 0.8V.

Note5: TX disable is an input that is used to shut down the transmitter optical output. It is pulled up within the module with a 4.7 – 10 KΩ resistor. Its states are:

Low (0 - 0.8V): Transmitter on

(>0.8, < 2.0V): Undefined

High (2.0 - 3.465V): Transmitter Disabled

Open: Transmitter Disabled

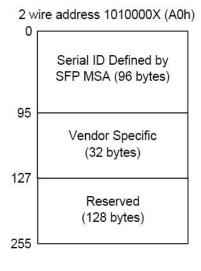
Note6: Modulation Absent, connected to VEET or VEER in the module.

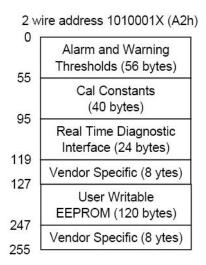
Note7: LOS (Loss of Signal) is an open collector/drain output, which should be pulled up with a 4.7K – 10KΩ resistor. Pull up voltage between 2.0V and VccT, R+0.3V. When high, this output indicates the received optical power is below the worst-case receiver sensitivity (as defined by the standard in use). Low indicates normal operation. In the low state, the output will be pulled to<0.8V.

Note8: VeeR and VeeT may be internally connected within the SFP module.

Note9: RD-/+: These are the differential receiver outputs. They are AC coupled 100Ω differential lines which should be terminated with 100Ω (differential) at the user SERDES. The AC coupling is done inside the module and is thus not required on the host board. The voltage swing on these lines will be between 350 and 700 mV differential (175 –350 mV single ended) when properly terminated.

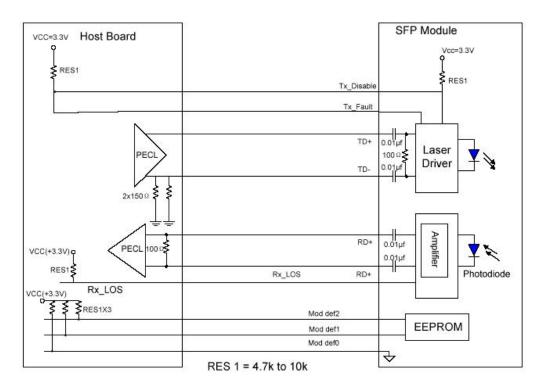
Note10: VccR and VccT are the receiver and transmitter power supplies. They are defined as 3.3V ±5% at the SFP connector pin. Maximum supply current is 300mA. Recommended host board power supply filtering is shown below. Inductors with DC resistance of less than 1 ohm should be used in order to maintain the required voltage at the SFP input pin with 3.3V supply voltage. When the recommended supply-filtering network is used, hot plugging of the SFP transceiver module will result in an inrush current of no more than 30mA greater than the steady state value. VccR and VccT may be internally connected within the SFP transceiver module.

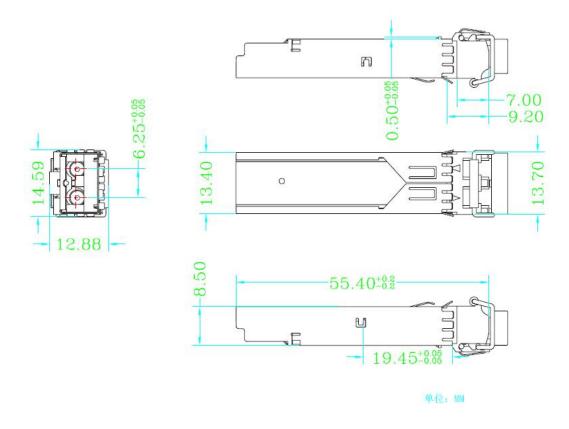

Note11: TD-/+: These are the differential transmitter inputs. They are AC-coupled, differential lines with 100Ω differential termination inside the module. The AC coupling is done inside the module and is thus not required on the host board. The inputs will accept differential swings of 150–1200 mV(75–600mV single-ended).



EEPROM

The serial interface uses the 2-wire serial CMOS EEPROM protocol defined for the ATMEL AT24C02/04 family of components. When the serial protocol is activated, the host generates the serial clock signal (SCL). The positive edge clocks data into those segments of the EEPROM that are not writing protected within the SFP transceiver. The negative edge clocks data from the SFP transceiver. The serial data signal (SDA) is bi-directional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially.


The Module provides diagnostic information about the present operating conditions. The transceiver generates this diagnostic data by digitization of internal analog signals. Calibration and alarm/warning threshold data is written during device manufacture. Received power monitoring, transmitted power monitoring, bias current monitoring, supply voltage monitoring and temperature monitoring all are implemented. If the module is defined as external calibrated, the diagnostic data are raw A/D values and must be converted to real world units using calibration constants stored in EEPROM locations 56 – 95 at wire serial bus address A2h. The digital diagnostic memory map specific data field define as following .For detail EEPROM information, please refer to the related document of SFF 8472 Rev9.3.



Recommend Circuit Schematic

Mechanical Specifications

10Gtek Transceivers Co.,Ltd

Driving Your Next Generation Networks

www.10gtek.com

Ordering information

Part No.	Data Rate	Laser	Fibre Type	Temp.	Distance	Optical Interface	DDMI
ASF15-03-120	155Mbps	1550nm DFB	SMF	-0~70℃	120Km	LC	NO
ASF15-03-120-D	155Mbps	1550nm DFB	SMF	-0~70℃	120Km	LC	YES

Revision History

Revision	Initiated	Approved	content	Release Date
Ver1.0	Jacky	Nicky	Released	Dec/2016
Ver1.1	QR.HUANG	Nicky	Released	May/2017

Further Information

For further information, please contact info@10gtek.com

Tel: +86 755 2998 8100 Fax: +86 755 6162 4140 Web: www.10gtek.com