www.10gtek.com

40Gb/s QSFP+ PSM IR4 AMQ10-IR4-02 Optical Transceiver Module AMQ10-IR4-02

Features

- Four-channel full-duplex transceiver modules
- Transmission data rate up to 10.7Gbit/s per channel
- Up to 1.4km transmission of single mode fiber
- Low power consumption <2.5W
- Operating case temperature 0°C to +70°C
- 3.3V power supply voltage
- RoHS 6 compliant
- Hot Pluggable QSFP form factor
- Single MPO connector receptacle
- Built-in digital diagnostic function

Applications

- InfiniBand QDR, DDR and SDR
- 40G Ethernet
- Proprietary High Speed Interconnections
- Datacenter

Description

The 10Gtek AMQ10-IR4-02 is a Four-Channel, Pluggable, Parallel, Fiber-Optic QSFP+ Transceiver for InfiniBand QDR/DDR/SDR,10G/8G/4G/2G fiber channel, PCIe and SAS Applications. The QSFP full-duplex optical module offers 4 independent transmit and receive channels, each capable of 10.7Gbps operation for an aggregate data rate of 42.8Gbps 1.4km

Driving Your Next Generation Networks

www.10gtek.com

using single mode fiber. These modules are designed to operate over single mode fiber systems using 1310nm FP laser array.An optical fiber ribbon cable with an MPO/MTP™ connector can be plugged into the QSFP module receptacle. QSFP+ PSM IR4 is one kind of parallel transceiver which provides increased port density and total system cost savings.

Absolute Maximum Ratings

The operation in excess of any absolute maximum ratings might cause permanent damage to this module.

Parameter	Symbol	Min	Max	Unit	Note
Storage Temperature	TST	-40	85	degC	
Relative Humidity(non-condensing)	RH	0	85	%	
Operating Case Temperature	TOPC	0	70	degC	
Supply Voltage	VCC	-0.3	3.6	V	
Input Voltage	Vin	-0.3	Vcc+0.3	V	

Recommended Operating Conditions and Supply Requirements

Parameter	Symbol	Min	Typical	Max	Unit
Operating Case Temperature	TOPC	0		70	degC
Power Supply Voltage	VCC	3.13	3.3	3.47	V
Power Consumption		-		2.5	W
Data Rate	DR		10.3	10.7	Gbps
Data Speed Tolerance	ΔDR	-100		+100	ppm
Link Distance with G.652	D	0		1.4	km

www.10qtek.com

Electrical Specifications

Parameter	Symbol	Min	Typical	Max	Unit
Differential input impedance	Zin	90	100	110	ohm
Differential Output impedance	Zout	90	100	110	ohm
Differential input voltage amplitude aAmplitude	ΔVin	300		1100	mVp-p
Differential output voltage amplitude	ΔVout	500		800	mVp-p
Bit Error Rate	BR			E-12	
Input Logic Level High	VIH	2.0		VCC	V
Input Logic Level Low	VIL	0		0.8	V
Output Logic Level High	VOH	VCC-0.5		VCC	V
Output Logic Level Low	VOL	0		0.4	V

Optical Characteristics

All parameters are specified under the recommended operating conditions with PRBS31 data pattern unless otherwise specified.

Parameter	Symbol	Min	Typical	Max	Unit	Notes		
	Transmitter							
Center Wavelength AMQ10-IR4-02	λС	1270	1310	1350	nm	1		
RMS Spectral Width	λrms	-		3.5	nm	1		
Average Launch Power, each lane	PAVG	-5.2	-2.5	+0.5	dBm			
Optical Modulation Amplitude (OMA)	POMA	-4.5	-2.5	+2.0	dBm	1		
Difference in Launch Power between any two lanes	Ptx,diff			5.0	dB			
Launch Power in OMA minus Transmitter and Dispersion Penalty (TDP), each Lane	OMA-TDP	-9.7	-		dBm	1		
Rise/Fall Time	Tr/Tf			50	ps			
Extinction Ratio	ER	3.5			dB			
Relative Intensity Noise	Rin			-128	dB/Hz			
Optical Return Loss Tolerance	TOL			12	dB			

3

Driving Your Next Generation Networks

www.10gtek.com

Transmitter Reflectance	RT			-12	dB	
Transmitter Eye Mask Margin	EMM	10			%	2
Average Launch Power OFF Transmitter, each Lane	Poff			-30	dBm	
Transmitter Eye Mask Definition {X1, X2, X3, Y1, Y2, Y3}		{0.25, 0.4, 0.45, 0.25, 0.28, 0.4}				
	1	Receiver				
Center Wavelength AMQ10-IR4-02	λС	1270	1310	1350	nm	
Damage Threshold	THd	+3			dBm	
Overload, each lane	OVL	+0.5			dBm	
Receiver Sensitivity in OMA, each Lane	SEN			-12.5	dBm	
Difference in Receive Power between any two Lanes (OMA)	Prx,diff			5.0	dB	
Signal Loss Assert Threshold	LOSA	-30			dBm	
Signal Loss Deassert Threshold	LOSD			-15	dBm	
LOS Hysteresis	LOSH	0.5		6	dB	
Optical Return Loss	ORL			-12	dBm	
Receive Electrical 3 dB upper Cutoff Frequency, each Lane	Fc			12	GHz	

Notes:

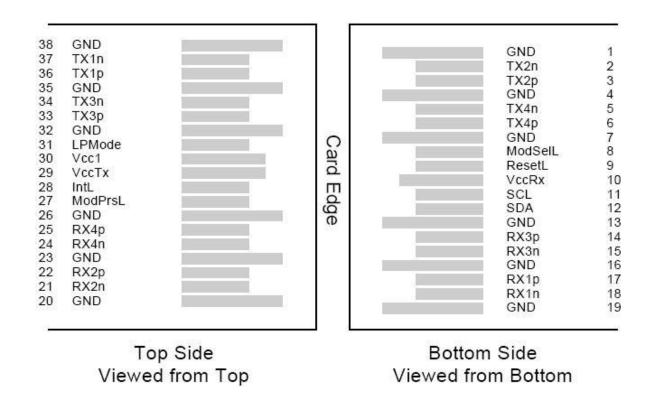
- Transmitter wavelength, RMS spectral width and power need to meet the OMA minus TDP specs to guarantee link performance.
- **2.** The eye diagram is tested with 1000 waveform.

Driving Your Next Generation Networks

www.10gtek.com

Pin Descriptions

PIN	Logic	Symbol	Name/Description	Note
1		GND	Ground	1
2	CML-I	Tx2n	Transmitter Inverted Data Input	
3	CML-I	Tx2p	Transmitter Non-Inverted Data output	
4		GND	Ground	1
5	CML-I	Tx4n	Transmitter Inverted Data Input	
6	CML-I	Tx4p	Transmitter Non-Inverted Data output	
7		GND	Ground	1
8	LVTLL-I	ModSelL	Module Select	
9	LVTLL-I	ResetL	Module Reset	
10		VccRx	+ 3.3V Power Supply Receiver	2
11	LVCMOS-I/O	SCL	2-Wire Serial Interface Clock	
12	LVCMOS-I/O	SDA	2-Wire Serial Interface Data	
13		GND	Ground	
14	CML-O	Rx3p	Receiver Non-Inverted Data Output	
15	CML-O	Rx3n	Receiver Inverted Data Output	
16		GND	Ground	1
17	CML-O	Rx1p	Receiver Non-Inverted Data Output	
18	CML-O	Rx1n	Receiver Inverted Data Output	
19		GND	Ground	1
20		GND	Ground	1
21	CML-O	Rx2n	Receiver Inverted Data Output	
22	CML-O	Rx2p	Receiver Non-Inverted Data Output	
23		GND	Ground	1
24	CML-O	Rx4n	Receiver Inverted Data Output	1
25	CML-O	Rx4p	Receiver Non-Inverted Data Output	
26		GND	Ground	1
27	LVTTL-O	ModPrsL	Module Present	
28	LVTTL-O	IntL	Interrupt	
29		VccTx	+3.3 V Power Supply transmitter	2
30		Vcc1	+3.3 V Power Supply	2
31	LVTTL-I	LPMode	Low Power Mode	
32		GND	Ground	1


Driving	Vour P	Jeyt (Genera	tion I	Networks
DITAILIE	I U UI I	TCAL.	SCHOL		TC CWOINS

www.10gtek.com

33	CML-I	Tx3p	Transmitter Non-Inverted Data Input	
34	CML-I	Tx3n	Transmitter Inverted Data Output	
35		GND	Ground	1
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input	
37	CML-I	Tx1n	Transmitter Inverted Data Output	
38		GND	Ground	1

Notes:

- 1. Module circuit ground is isolated from module chassis ground within the module. GND is the symbol for signal and supply (power) common for QSFP modules.
- 2. The connector pins are each rated for a maximum current of 500mA.

ModSelL Pin

The ModSelL is an input pin. When held low by the host, the module responds to 2-wire serial communication commands. The ModSelL allows the use of multiple QSFP modules on a single 2-wire interface bus. When the ModSelL is "High", the module will not respond to any 2-wire interface communication from the host. ModSelL has an internal pull-up in the module.

Driving Your Next Generation Networks

www.10qtek.com

ResetL Pin

Reset. LPMode_Reset has an internal pull-up in the module. A low level on the ResetL pin for longer than the minimum pulse length (t_Reset_init) initiates a complete module reset, returning all user module settings to their default state. Module Reset Assert Time (t_init) starts on the rising edge after the low level on the ResetL pin is released. During the execution of a reset (t_init) the host shall disregard all status bits until the module indicates a completion of the reset interrupt. The module indicates this by posting an IntL signal with the Data_Not_Ready bit negated. Note that on power up (including hot insertion) the module will post this completion of reset interrupt without requiring a reset.

LPMode Pin

10Gtek PSM IR4operate in the low power mode (less than 1.5 W power consumption) This pin active high will decrease power consumption to less than 1W.

ModPrsL Pin

ModPrsL is pulled up to Vcc on the host board and grounded in the module. The ModPrsL is asserted "Low" when the module is inserted and deasserted "High" when the module is physically absent from the host connector.

IntL Pin

IntL is an output pin. When "Low", it indicates a possible module operational fault or a status critical to the host system. The host identifies the source of the interrupt by using the 2-wire serial interface. The IntL pin is an open collector output and must be pulled up to Vcc on the host board.

Power Supply Filtering

The host board should use the power supply filtering shown in Figure 1.

V_{cc} TX

GND

0.1µF

Driving Your Next Generation Networks

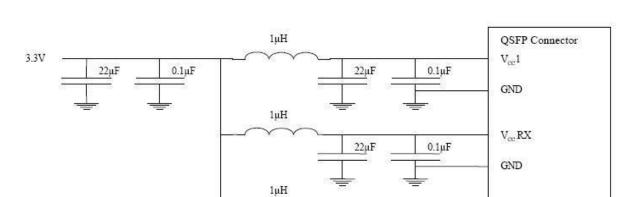
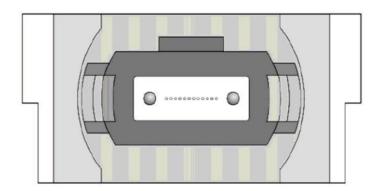



Figure 1. Host Board Power Supply Filtering

Optical Interface Lanes and Assignment

The optical interface port is a male MPO connector .The four fiber positions on the left as shown in Figure 2, with the key up, are used for the optical transmit signals (Channel 1 through4). The fiber positions on the right are used for the optical receive signals (Channel 4 through 1). The central four fibers are physically present.

Transmit Channels: 1 2 3 4
Unused positions: x x x x
Receive Channels: 4 3 2 1

Figure 2. Optical Receptacle and Channel Orientation

www.10gtek.com

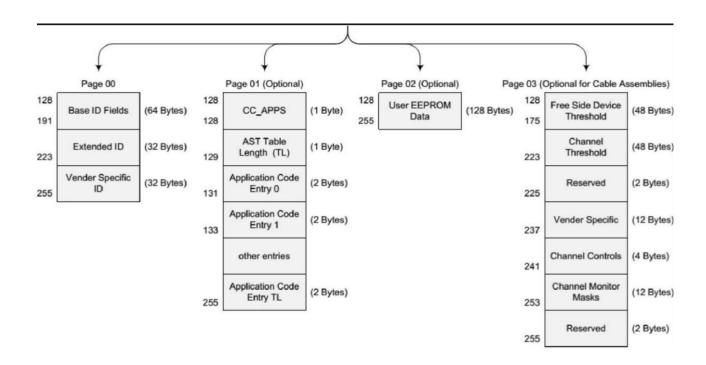
Dignostic Monitoring Interface

Digital diagnostics monitoring function is available on all 10Gtek QSFP+ PSM IR4. A 2-wire serial interface provides user to contact with module. The structure of the memory is shown in Figure 3. The memory space is arranged into a lower, single page, address space of 128 bytes and multiple upper address space pages. This structure permits timely access to addresses in the lower page, such as Interrupt Flags and Monitors. Less time critical time entries, such as serial ID information and threshold settings, are available with the Page Select function. The interface address used is A0xh and is mainly used for time critical data like interrupt handling in order to enable a one-time-read for all data related to an interrupt situation. After an interrupt, IntL, has been asserted, the host can read out the flag field to determine the affected channel and type of flag.

Parameter	Symbol	Min	Max	Unit	Notes
Temperature monitor absolute error	DMI_Temp	-3	+3	degC	Over operating temp
Supply voltage monitor absolute error	DMI_VCC	-0.1	0.1	V	Full operating range
Channel RX power monitor absolute error	DMI_RX	-3	3	dB	Per channel
Channel Bias current monitor	DMI_Ibias	-10%	10%	mA	Per channel
Channel TX power monitor absolute error	DMI_TX	-3	3	dB	Per channel

Figure 3

www.10gtek.com


EEPROM Serial ID Memory Contents

2 - wire Management Interface

The transceivers provide management two - wire interface and the management memory map is specified by SFF - 8436.

2-W	ire Serial Address: 1010	000x
0	ID and status	(3 Bytes)
21	Interrupt Flags	(19 Bytes
33	Module Monitors	(12 Bytes
81	Channel Monitors	(48 Bytes
85	Reserved	(4 Bytes)
97	Control	(12 Bytes
99	Reserved	(2 Bytes)
106	Free Side Device and Channel Mask	(7 Bytes)
107	Reserved	(1 Bytes)
111	Free Side Device Properties	(4 Bytes)
118	Reserved	(7 Bytes)
122	Password Change Entry Area (Optional)	(4 Bytes)
126	Password Entry Area (Optional)	(4 Bytes)
127	Page Select Byte	(1 Bytes)

Mechanical Dimensions

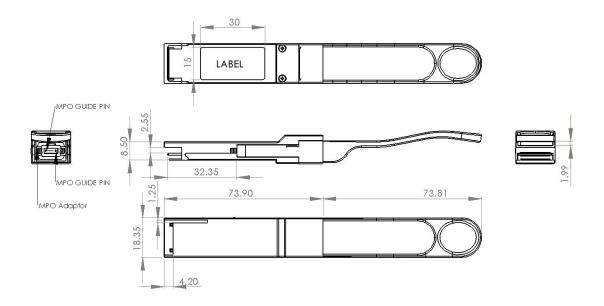


Figure 4.

www.10gtek.com

Attention: To minimize MPO connection induced reflections, an MPO receptacle with 8-degree angled end-face is utilized for this product. A male MPO connector with 8-degree end-face should be used with this product as illustrated in Figure 5.

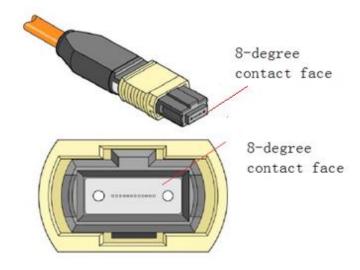


Figure 5.

ESD

This transceiver is specified as ESD threshold 1KV for high speed data pins and 2KV for all others electrical input pins, tested per MIL-STD-883, Method 3015.4 /JESD22-A114-A (HBM). However, normal ESD precautions are still required during the handling of this module. This transceiver is shipped in ESD protective packaging. It should be removed from the packaging and handled only in an ESD protected environment.

Laser Safety

This is a Class 1 Laser Product according to IEC 60825-1:2007. This product complies with 21 CFR 1040.10 and 1040.11 except for deviations pursuant to Laser Notice No. 50, dated (June 24, 2007)

Order Information

Part Number	Product Description
AMQ10-IR4-02	4X10.3G QSFP+ IR4, MPO connector, 1.4Km using single mode fiber

Driving Your Next Generation Networks

www.10gtek.com

Performance figures, data and any illustrative material provided in this data sheet are typical and must be specifically confirmed in writing by 10Gtek before they become applicable to any particular order or contract. In accordance with the 10Gtek policy of continuous improvement specifications may change without notice. The publication of information in this data sheet does not imply freedom from patent or other protective rights of 10Gtek or others. Further details are available from any 10Gtek sales representative.

Revision History

Revision	Initiated	Approved	content	Release Date
Ver1.0	Jacky	Nicky	Released	Dec/2016
Ver1.1	QR.HUANG	Nicky	Released	June/2017

Further Information

For further information, please contact info@10gtek.com

Tel: +86 755 2998 8100 Fax: +86 755 6162 4140 Web: www.10gtek.com