

#### UNH-IOL — 21 Madbury Road, Suite 100 — Durham, NH 03824 — +1-603-862-0090

Carly Sun 10Gtek Transceivers Co. Ltd info@10gtek.com March 1, 2018

Enclosed are the results from the Open Network Systems Interoperability performed on:

Module or Cable Assembly Under Test (MUT/CUT):

| Vendor and Device Type | 10Gtek QSFP  |
|------------------------|--------------|
| Part Number            | ALQ10-LR4-10 |

Host Under Test (HUT):

| Host System 1 Composition |           |  |
|---------------------------|-----------|--|
| Network Operating System  | Cumulus   |  |
| OS Version                | 3.5.2     |  |
| Bare Metal Switch         | Wedge 100 |  |
| Part Number               | 100       |  |
| ONIE Version              | 2018.02   |  |

This testing pertains to the Open Network Systems Interoperability Test Plan, which outlines a series of tests performed on a variety of optical transceivers and cables with bare-metal open switches running Network Operating Systems from multiple vendors. The focus of these tests was basic interoperability, which aims to validate the operation of open network systems.

As always, we welcome any comments regarding this Test Suite. If you have any questions about the test procedures or results, please feel free to contact me via e-mail at <u>david@iol.unh.edu</u> or by phone at +1-603-862-0090.

Regards, David Woolf

## **Digital Signature Information**

This document was created using an Adobe digital signature. A digital signature helps to ensure the authenticity of the document, but only in this digital format. For information on how to verify this document's integrity proceed to the following site:

#### https://www.iol.unh.edu/testing/reports/certificate-install

If the document status still indicates "Validity of author NOT confirmed", then please contact the UNH-IOL to confirm the document's authenticity. To further validate the certificate integrity, Adobe 6.0 should report the following fingerprint information:

MD5 Fingerprint: 80 60 3C EA 42 D6 61 38 62 24 14 6A 1F 66 E9 84 SHA-1 Fingerprint: 81 FF 90 E8 56 CB 95 7F 3E D6 4D B8 B2 99 EF BE 3C CC 7D DE



**Digitally signed** 

Date: 2018.03.20

10:43:13 -04'00'

by UNH-IOL

In section 2, the following equipment was used:

| Test System Hardware |                  |
|----------------------|------------------|
| EEPROM Reader        | I2C Elite Reader |

In section 3, the following equipment was used:

| Test System Hardware |                                   |
|----------------------|-----------------------------------|
| Network Analyzer     | PNA –Performance Network Analyzer |

In section 4, the following equipment was used:

| Test System Hardware    |                                                             |  |
|-------------------------|-------------------------------------------------------------|--|
| Wide Bandwidth          | Keysight DCA-X 86100D Wide Bandwidth Oscilloscope           |  |
| Oscilloscope            |                                                             |  |
| Waveform Analyzer       | Keysight 86105C Optical Waveform Analyzer                   |  |
| 50GHz Waveform          | Keysight 86108B Mega Module, 50GHz Bandwidth Waveform       |  |
| Analyzer                | Analyzer                                                    |  |
|                         |                                                             |  |
| Clock Recovery Module   | Keysight 83496B Optical/Electrical Clock Data Recovery Unit |  |
| High Performance Serial | Tektronix BERTScope                                         |  |
| BERT                    |                                                             |  |
| Signal Quality Analyzer | BERTScope should be set up to transmit PRBS9 at 10.3125Gbps |  |
| De-Emphasis Signal      | Agilent N4916B                                              |  |
| Converter               |                                                             |  |

\*Two modules used during testing

In section 6, an MLNX NICS was used to generate test traffic:

| Test System Hardware       |           |
|----------------------------|-----------|
| Ethernet Traffic Generator | MLNX NICS |
| Software Version           | Ostinato  |
| Port Types                 | 40/100G   |

| Result              | Interpretation                                                                                                                                                                                          |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PASS                | The Device Under Test (DUT) was observed to exhibit conformant behavior.                                                                                                                                |
| PASS W/<br>Comments | The specified behavior is demonstrated by the DUT; however this result indicates that either changes were made to the standard test procedure or results other than the expected results were observed. |
| FAIL                | The DUT was observed to exhibit non-compliant behavior.                                                                                                                                                 |
| INFO                | This Test is designed for informational purposes only. While the results may help ensure the interoperability of the DUT, a PASS/FAIL is not given for this test.                                       |
| WARN                | The DUT was observed to exhibit behavior that is not recommended.                                                                                                                                       |
| N/A                 | Not Applicable. This test is not applicable for the DUT.                                                                                                                                                |
| N/S                 | Not Supported. This test was not run due to features not implemented on the DUT.                                                                                                                        |
| N/T                 | Not tested. This test was not run.                                                                                                                                                                      |

The following table contains possible results and their meanings.

| Summary of Results- Conformance                       |        |
|-------------------------------------------------------|--------|
| Test                                                  | Result |
| Test 1.1:                                             | N/A    |
| Test 1.2:                                             | PASS   |
| Test 3.1.1: Return Loss for 10G Passive Cable         | PASS   |
| Test 3.1.2: Insertion Loss for 10G Passive Cable      | PASS   |
| Test 5.1.1: Output Rise and Fall Times for 100G Host  | PASS   |
| Test 5.1.2: Transmitter Eye Mask for 100G Host        | PASS   |
| Test 5.1.3: Total Jitter for 100G Host                | PASS   |
| Test 5.1.4: Input and Output Return Loss on 100G Host | PASS   |

| Summary of Results - Interoperability                    |        |
|----------------------------------------------------------|--------|
| Test                                                     | Result |
| Test 2.1: Physical Compatibility with Supporting Devices | PASS   |
| Test 2.2: Host Management of Module or Cable Assembly    | PASS   |
| Test 2.3: Diagnostic Optical Monitor Support             | PASS   |
| Test 6.1: Establish Baseline Performance Analysis        | PASS   |
| Test 6.2:                                                | PASS   |
| Test 6.3:Packet Error Rate Estimation                    | PASS   |
| Test 6.4: Packet Loss/Stress Test                        | PASS   |



N-1 N-1

| Conformance Test Results                                                                                                                   |                        |
|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Test Information                                                                                                                           | Test Result            |
| Test 1.1:                                                                                                                                  |                        |
| <i>Purpose</i> : To verify that a host can pass a random sampling of ONIE Compliance Environment tests.                                    | N/A                    |
| Comments on Test Procedure                                                                                                                 |                        |
| The random sampling of tests from the ONIE Compliance Environment was not used.                                                            |                        |
| Comments on Test Results                                                                                                                   |                        |
| Additional Comments                                                                                                                        |                        |
|                                                                                                                                            |                        |
| This test is only applicable to Hosts which have not performed ONIE compli-<br>previously.                                                 | ance testing           |
|                                                                                                                                            | a                      |
| Test Information                                                                                                                           | Test Result            |
| Test 1.2:                                                                                                                                  |                        |
| <i>Purpose</i> : To verify that a NOS can be successfully installed through ONIE.                                                          | PASS                   |
| Comments on Test Procedure                                                                                                                 |                        |
| This test was completed using the standard procedure as written in the Test Plan. The random the ONIE Compliance Environment was not used. | sampling of tests from |
| Comments on Test Results                                                                                                                   |                        |

**Part A:** The DUT was able to install the NOS via ONIE. **Part B:** The DUT was able to uninstall the NOS via ONIE.

#### **Additional Comments**

| Test Information                                                                                                                                                                                                               | Test Result         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Test 3.1.1: Return loss for 10G Passive Cable                                                                                                                                                                                  |                     |
| <i>Purpose</i> : To verify that the return loss of the DUT is within the conformance limits provided by SFF-8431 Appendix E, Table 37.                                                                                         | PASS                |
| Comments on Test Procedure                                                                                                                                                                                                     |                     |
| This test was completed using the standard procedure.                                                                                                                                                                          |                     |
| Comments on Test Results                                                                                                                                                                                                       |                     |
| The differential return loss observed did not violate the limits governed by SFF-8431 Appendi<br>10GBASE-CR passive cables:<br>$12 - 2\sqrt{-},  0.01 \le < 4.1$ $11,  22 \ge \{ 6.3 - 13 \log_{10} 5.5, 4.1 \le \le 11.1 \} $ | x E.4, Table 37 for |
| Additional Comments                                                                                                                                                                                                            |                     |
|                                                                                                                                                                                                                                |                     |
| Test Information                                                                                                                                                                                                               | Test Result         |
| Test 3.1.2: <b>Insertion Loss for 10G Passive Cable</b><br><i>Purpose</i> : To verify that the insertion loss of the Cable under test is within the conformance limits provided by IEEE Std. 802.3-2012 Annex, Table 37.       | PASS                |
| Comments on Test Procedure                                                                                                                                                                                                     |                     |
| This test was completed using the standard procedure.                                                                                                                                                                          |                     |
| Comments on Test Results                                                                                                                                                                                                       |                     |
| The insertion loss of the cable under test does not violate the requirements passive cable assem                                                                                                                               | nblies.             |
| $3 \leq 21, 12 \leq 17.04$ , 5.15625                                                                                                                                                                                           |                     |
| Additional Comments                                                                                                                                                                                                            |                     |
|                                                                                                                                                                                                                                |                     |
|                                                                                                                                                                                                                                |                     |
|                                                                                                                                                                                                                                |                     |

| Test Information                                                                                                                                | Test Result |
|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Test 5.1.1: Output Rise and Fall Times for 10G Host                                                                                             |             |
| <i>Purpose</i> : To verify that the Eye Mask Hit Ratio is within the conformance limits.                                                        | PASS        |
| Comments on Test Procedure                                                                                                                      |             |
| The test was completed with the standard procedure.                                                                                             |             |
| Comments on Test Results                                                                                                                        |             |
| The device under test exhibited the expected behavior.                                                                                          |             |
| Additional Comments                                                                                                                             |             |
|                                                                                                                                                 |             |
|                                                                                                                                                 | -           |
| Test Information                                                                                                                                | Test Result |
| Test 5.1.2: <b>Transmitter Eye Mask on 10G Host</b><br><i>Purpose</i> : To verify that the Eye Mask Hit Ratio is within the conformance limits. | PASS        |
| Comments on Test Procedure                                                                                                                      |             |
| The test was completed with the standard procedure.                                                                                             | 68          |
| Comments on Test Results                                                                                                                        |             |
| The device under test exhibited the expected behavior.                                                                                          |             |
| Additional Comments                                                                                                                             |             |

| Test Information                                                                       | Test Result |
|----------------------------------------------------------------------------------------|-------------|
| Test 5.1.3:                                                                            |             |
| <i>Purpose</i> : To verify that the Total Jitter (TJ) is within the conformance limit. | PASS        |
| Comments on Test Procedure                                                             |             |
| The test was completed with the standard procedure.                                    |             |
| Comments on Test Results                                                               |             |
| The device under test exhibited the expected behavior.                                 |             |
| Additional Comments                                                                    |             |
|                                                                                        |             |
|                                                                                        |             |
| Tost Information                                                                       | Tost Dosult |

| Test Information                                                                                                       | Test Result |
|------------------------------------------------------------------------------------------------------------------------|-------------|
| Test 5.1.4: Input and Output Return Loss on 10G Host                                                                   |             |
| <i>Purpose</i> : To verify that the differential input and output return loss of the DUT is within conformance limits. | PASS        |
| Comments on Test Procedure                                                                                             |             |
| The test was completed with the standard procedure.                                                                    |             |
| Comments on Test Results                                                                                               |             |
| The device under test exhibited the expected behavior.                                                                 |             |
| Additional Comments                                                                                                    |             |
| See Appendix B                                                                                                         |             |

| Interoperability Test Results                                                                                                                                                                                   |             |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|
| Test Information                                                                                                                                                                                                | Test Result |  |  |  |
| Test 2.1: Physical Compatibility with Supporting Devices                                                                                                                                                        |             |  |  |  |
| <i>Purpose</i> : To verify that the mechanical form factor is compatible with devices for interoperability purposes.                                                                                            | PASS        |  |  |  |
| Comments on Test Procedure                                                                                                                                                                                      |             |  |  |  |
| The test was completed with the standard procedure.                                                                                                                                                             |             |  |  |  |
| Comments on Test Results                                                                                                                                                                                        |             |  |  |  |
| <ul><li>Part A: The MUT/CUT was able to be inserted into the Host.</li><li>Part B: This test is not applicable to Cable Assemblies.</li><li>Part C: The MUT/CUT was able to be removed from the Host.</li></ul> |             |  |  |  |
| Additional Comments                                                                                                                                                                                             |             |  |  |  |
|                                                                                                                                                                                                                 |             |  |  |  |
| Test Information                                                                                                                                                                                                | Test Result |  |  |  |
|                                                                                                                                                                                                                 |             |  |  |  |

Test 2.2:

*Purpose*: To verify that the MUT/CUT is manageable via the Host complex.

**Comments on Test Procedure** 

The test was completed with the standard procedure.

#### **Comments on Test Results**

**Part B:** The EEPROM data of the MUT/CUT was readable. The serial number and vendor information extracted from the EEPROM data matches the serial number and vendor information of the part.

#### **Additional Comments**

PASS

| Test Information                                                                                                                         | Test Result |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|--|
| Test 2.3:<br><i>Purpose</i> : To verify that the MUT/CUT (active optical cable only) supports diagnostic functions via the Host complex. | PASS        |  |  |  |  |
| Comments on Test Procedure                                                                                                               |             |  |  |  |  |
| The test was completed with the standard procedure.                                                                                      |             |  |  |  |  |
| Comments on Test Results                                                                                                                 |             |  |  |  |  |
| <b>Part A:</b> The MUT/CUT supports diagnostic monitoring and the diagnostic information from the EEPROM was readable by the NOS.        |             |  |  |  |  |
| Additional Comments                                                                                                                      |             |  |  |  |  |
|                                                                                                                                          |             |  |  |  |  |
|                                                                                                                                          |             |  |  |  |  |

| Test Information                                                                                                             | Test Result         |
|------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Test 6.1: <b>Establish Baseline Performance Analysis</b>                                                                     | PASS                |
| Comments on Test Procedure                                                                                                   |                     |
| This test was completed using a modified procedure. Because of a lack of 40G Golden Modu baselined using each 40G MUT/CUT.   | lles, the Host was  |
| Comments on Test Results                                                                                                     |                     |
| The baseline performance of the Host was determined to be 90% line rate. All proceeding test conducted using this line rate. | sts in Group 6 were |
| Additional Comments                                                                                                          |                     |
|                                                                                                                              |                     |
| Test Information                                                                                                             | Test Result         |
| Test 6.2:<br><i>Purpose</i> : To determine if the MUT/CUT, HUT and LP establish a link while varying the power up sequence.  | PASS                |
| Comments on Test Procedure                                                                                                   |                     |
| This test was completed using the standard procedure.                                                                        |                     |
| Comments on Test Results                                                                                                     |                     |
| <b>Part A:</b> The Host and Link Partner were able to establish a valid link with this MUT/CUT w operational.                | hile fully powered  |

- **Part B:** The Host and Link Partner were able to establish a valid link with this MUT/CUT when the Link Partner was powered on after the Host.
- **Part C:** The Host and Link Partner were able to establish a valid link with this MUT/CUT when the Host was powered on after the Link Partner.

#### **Additional Comments**

| Test Information                                                                                                                                                                                      | Test Result |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|--|
| Test 6.3: <b>Packet Error Rate Estimation</b><br><i>Purpose</i> : To determine if a Host can exchange packets with a Module or Cable Assembly<br>such that a bit error rate of $10^{-12}$ is achieved | PASS        |  |  |  |  |
| Comments on Test Procedure                                                                                                                                                                            |             |  |  |  |  |
| This test was completed using the standard procedure.                                                                                                                                                 |             |  |  |  |  |
| Comments on Test Results                                                                                                                                                                              |             |  |  |  |  |
| <b>Part A:</b> All 247,000,000 frames transmitted by TS1 were received by TS2.<br><b>Part B:</b> All 10,506,539,320 frames transmitted by TS1 were received by TS2.                                   |             |  |  |  |  |
| Additional Comments                                                                                                                                                                                   |             |  |  |  |  |
|                                                                                                                                                                                                       |             |  |  |  |  |

| Test Information                                                                                                                                                                                                    | Test Result |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--|--|--|--|
| Test 6.4: <b>Packet Loss/Stress Test</b><br><i>Purpose</i> : To verify that no obvious buffer management problems occur when directing a large volume of traffic at the Host and Module/Cable Assembly combination. | PASS        |  |  |  |  |
| Comments on Test Procedure                                                                                                                                                                                          |             |  |  |  |  |
| This test was completed using the standard procedure.                                                                                                                                                               |             |  |  |  |  |
| Comments on Test Results                                                                                                                                                                                            |             |  |  |  |  |
| Parts A-D: All 1,000,000,000 64-byte frames transmitted by TS1 were received by TS2.<br>All 1,000,000,000 1518-byte frames transmitted by TS1 were received by TS2.                                                 |             |  |  |  |  |
| Additional Comments                                                                                                                                                                                                 |             |  |  |  |  |
|                                                                                                                                                                                                                     |             |  |  |  |  |

#### **Appendix A: EEPROM Data**

10Gtek QSFP+ module Part Number: ALQ10-LR4-10 Serial Number: WTQLRHB0213 10Gtek WTQLRHB0213 EEPROMdecode 20180102153107.txt SERIAL ID Keys: BR NOMINAL: 10300 CONNECTOR: 7 CU ATTENUATE 2 5: 0 CU ATTENUATE 5 0: 0 DEVICE TECH: 0x0 ENCODING: 5 EXTENDED MODULE: 0x7 EXT IDENTIFIER: 0 EXT RATE COMPLY: 0 IDENTIFIER: 13 LENGTH OM1 62 5UM: 0 LENGTH OM2 50UM: 0 LENGTH OM3 50UM: 0 LENGTH OM4 OR CU: 0 LENGTH SMF KM: 10000 MAX CASE TEMP: 70 SPEC COMPLIANCE: 0x2 0x0 0x0 0x0 0x0 0x0 0x0 0x0 VENDOR NAME: 10Gtek VENDOR OUI: 0x0 0x0 0x0 VENDOR PN: ALQ10-LR4-10 VENDOR REV: 01 WAVELENGTH: 1310.0 WAVELEN TOLERANCE: 0.0 I2C Address A0h, bytes 0-127, in hex 0000x: 0d0500ff 0000000 00555500 0000000 0010x: 0000000f 00001aa6 00007bb1 00000000 0020x: 0000002a 0000000 00003e6b 395143a7 0030x: 3e6b2cae 2d5f299f 25400000 00000000 0040x: 0000000 0000000 0000000 0000000 0050x: 0000000 0000000 0000000 0000000 0060x: 0000000 0000000 00001f00 0000000 0070x: 0000000 0000000 0000000 0000000 I2C Address A0h, page 0, bytes 128-255, in hex 0000x: 0d000702 0000000 00000005 67000a00 0010x: 0000000 31304774 656b2020 20202020 0020x: 20202020 07000000 414c5131 302d4c52 0030x: 342d3130 20202020 30316658 00004670 0040x: 0000000 5754514c 52484230 32313320 0050x: 20202020 31373131 30312020 080000fd 0060x: 0000000 0000000 0000000 0000000 0070x: 0000000 0000000 0000000 0000000

8484

## **Appendix B: Pluggable Module / Cable Electrical Data**

Optics Self-Test Report - Port 1: 100GigE Layer 2 Traffic Term

Generated by Viavi 5800-100G

# **Optics Self-Test**

| Customer Name  |  |
|----------------|--|
| Technician ID  |  |
| Test Location  |  |
| Work Order     |  |
| Comments/Notes |  |

# **Overall Test Result: Pass**

## **Appendix C: Host Electrical Data**

| Eye/Mask                 | )-4                             | 🔶 KEYSIGHT 🛛 Fil                    | e Setup                                    | Measure                       | Tools App | s Help                                              |                                                      | to<br>ale Run Sing                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------|---------------------------------|-------------------------------------|--------------------------------------------|-------------------------------|-----------|-----------------------------------------------------|------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| XT1                      | Eye Mea                         | Pattern Acquisition (10<br>Waveform | 0%)                                        |                               |           |                                                     |                                                      |                                                            | Limit (Patterns) : 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| One Level                | St                              |                                     |                                            |                               |           |                                                     |                                                      |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Zero Level               | Mask Test                       |                                     |                                            |                               | 697.1     | 950'0115                                            |                                                      | Sig                                                        | ferential IA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Eye Height               | JSA/CRE                         | L Cros                              | sing 📕 👔                                   |                               | R         | open                                                |                                                      | R Crossing                                                 | and set of the set of |
| XX                       | $\overline{\langle\!\!\langle}$ | È                                   | . <u></u> .                                |                               |           |                                                     |                                                      |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Eye Width                | Ad                              | Results 🕞                           |                                            |                               |           | ۹ 📎                                                 |                                                      |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                          | V Ey                            | Measurement                         |                                            | Current                       | t Minimur | n Maximum                                           | Count                                                |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| **                       |                                 | Eye Width[Ratio]                    | D1A                                        | 0.248                         | 0.23      | 8 0.306                                             | 149                                                  |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Signal to Noise          |                                 | Eye Height[Ampl]                    | DIA                                        | Eye?                          | -         |                                                     | 0                                                    |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Ratio                    |                                 | Rise Time                           | DIA                                        | 32.89 ps                      | 19.24 p   | s 33.41 ps                                          | 151                                                  |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                          |                                 | Fall Time                           | DIA                                        | 33.31 ps                      | 16.96 p   | s 33.62 ps                                          | 150                                                  |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| +                        |                                 | Eye Ampl                            | DIA                                        | 354.0 mV                      | 352.6 m   | / 354.2 mV                                          | 152                                                  |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Duty Cycle<br>Distortion |                                 |                                     |                                            |                               |           |                                                     |                                                      |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| More (2/3)               |                                 | Hetails                             | nits Setup                                 | )                             |           |                                                     |                                                      |                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                          | 138                             | 3 mV/<br>5 mV                       | <i>CDR</i><br>25.781250 Gb<br>LBW: 4.000 M | /s Reference<br>Hz Internal R | eference  | <i>Timebase</i><br>2.0000 bits<br>Pos: 651.1980 bit | Acquisition<br>Full Pattern: On<br>13.99804305 pts/b | Trigger<br>Src: CDR (Slot 1)<br>25.781171 Gb/s<br>511 bits | Math Signals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

